Deep Learning Embeddings for Data Series Similarity Search

Qitong Wang

Université de Paris, LIPADE

Themis Palpanas

Université de Paris, LIPADE French University Institute (IUF)

ACM SIGKDD 2021, Singapore

Data Series

• Sequence of points ordered along some dimension

Data Series from Various Domains

Seismic Data²

- 1. Ali Shoeb. Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. PhD Thesis, MIT, 2009.
- 2. Phase and polarity assessment of seismic data. https://wiki.seg.org/wiki/Phase_and_polarity_assessment_of_seismic_data, fetched June 22, 2021.

Data Series Similarity Search

Data Series Approximate Similarity Search

- Similarity search
 - given a series set S, a query series s_q and a similarity measure $d(\cdot, \cdot)$
 - *d* is commonly the Euclidean distance
 - find the closest series in S to s_q , i.e., $s_a = \underset{s_i \in S}{\arg \min d(s_q, s_i)}$

- Approximate similarity search
 - (efficiently) find $s_{a'}, d(s_q, s_{a'}) \approx d(s_q, s_a)$

State-of-the-art: iSAX Family of Indexes^{3,4}

Raw series \rightarrow PAA approximation \rightarrow SAX symbolization \rightarrow iSAX index

3. Alessandro Camerra, et al. Beyond One Billion Time Series: Indexing and Mining Very Large Time Series Collections with iSAX2+. KAIS 39(1):123-151, 2014.

4. Themis Palpanas. Evolution of a Data Series Index - The iSAX Family of Data Series Indexes. CCIS 1197, 2020.

Limitations of (PAA-based) iSAX

Depends on whether PAA successfully profiles the dataset

\rightarrow Need for better summarizations

PAA (and DFT) works to approximate and reconstruct a RandomWalk series

PAA (and DFT) fails to approximate and reconstruct a Deep1B series

DEA: Deep Embedding Approximation

Replace PAA by DEA for SAX symbolization and iSAX index

(PAA-based) iSAX \rightarrow DEA-based iSAX

Depends on whether PAA successfully profiles the dataset

\rightarrow Need for better summarizations

PAA (and DFT) works to approximate and reconstruct a RandomWalk series

PAA (and DFT) fails to approximate and reconstruct a Deep1B series

(PAA-based) iSAX \rightarrow DEA-based iSAX

• DEA better profiles diversified dataset than PAA

 ✓ Fulfill the need for better summarizations

DEA works to approximate and reconstruct a RandomWalk series

DEA works to approximate and reconstruct a Deep1B series

DEA-based iSAX

Replace PAA by DEA for SAX symbolization and iSAX index

How to generate high-quality DEA on massive data series collections for approximate similarity search?

Challenges

1. Effective architecture for similarity search?

- 2. Efficient learning on massive datasets?
 - 100 million 256-length series \approx 100GB

- √SEAnet: *SE*ries Approximation *net*work
 - exponentially dilated ResNet + Sum of Squares (SoS) regularization

Solutions

SEAnet Training

- Loss $L = L_C + \alpha L_R$
 - Compression error (pairwise) L_C

$$L_{C} = \frac{1}{N_{p}} \sum_{(S_{i},S_{j}) \in S \times S} \left| \frac{1}{\sqrt{m}} d(S_{i},S_{j}) - \frac{1}{\sqrt{l}} d(\phi(S_{i}),\phi(S_{j})) \right|$$

• Reconstruction error L_R

$$L_R = \frac{1}{N_S} \sum_{S_i \in S} \frac{1}{\sqrt{m}} d(S_i, \psi \cdot \phi(S_i))$$

1/√m and 1/√l: scaling coefficients under SoS regularization
 m: series length, l: DEA length, φ/ψ: en-/decoder mapping

Sum of Squares Preservation

- Sum of Squares (SoS)
 - $\sum_{i,j} M_{i,j}^2$
 - $M_{i,*}$ denotes series, $M_{*,j}$ denotes position

\Rightarrow measures preserved information

- in linear dimensionality reductions on z-normalized datasets
 - where SoS \Leftrightarrow total variances
- by selecting the largest eigenvalues

⇒fix SoS, to learn the transformation

- i.e., nonlinear encoder mapping
- SoS works as a regularizer

⇒fix transformation (linear), to preserve SoS

SoS-Preservation Regularization

- Regularize SEAnet by SoS preservations:
 - 1. z-normalize embeddings (LayerNorm2)
 - 2. scale series/DEA by its length in loss functions

• Benefits

- ✓ regularize by preserving SoS
 → higher-quality embeddings
- ✓ stabilize gradients and latent values (by decreasing Var) → better model convergence

	Before Scaling		Scaled by $\sqrt{256/m}$		Scaled by $\sqrt{1/m}$	
Length <i>m</i>	Mean	Var	Mean	Var	Mean	Var
256	22.605	0.999	22.605	0.999	1.4128	0.0039
128	15.969	0.998	22.583	1.9961	1.4115	0.0078
96	13.820	0.997	22.569	2.6597	1.4105	0.0104
16	5.5692	0.984	22.277	15.743	1.3923	0.0615
8	3.8772	0.967	21.933	30.944	1.3708	0.1209

How to generate high-quality DEA on massive data series collections for approximate similarity search?

Challenges

1. Effective architecture for similarity search?

- 2. Efficient learning on massive datasets?
 - 100 million 256-length series \approx 100GB

- √SEAnet: *SE*ries Approximation *net*work
 - exponentially dilated ResNet + Sum of Squares (SoS) regularization

Solutions

- √SEAsam: *SEA-sam*pling
 - sampling based on a sortable series summarization

SEAsam

Intuition

- Sampling by dataset's intrinsic distribution
- ✓ Draw samples by equal-intervals from the **ordered** set
- How to order series in a dataset?

\rightarrow Observation

- every subsequent bit in one SAX symbol contains a decreasing amount of information about the location
 - \approx space-filling curves

\checkmark Order by InvSAX⁵

- interleaving SAX's bits
- ⇒ all significant bits across each SAX symbol precede all less significant bits

• interleaving SAX's bits

• interleaving SAX's bits

• interleaving SAX's bits

• interleaving SAX's bits

• interleaving SAX's bits

Experimental Setup

• Datasets

- 3 synthetic (RandWalk, F5, F10)
- 4 real (Seismic, SALD, Deep1B, Astro)
- Comparison methods
 - PAA
 - SEAnet-nD (SEAnet without decoder)
 - TimeNet⁵, FDJNet⁶, InceptionTime⁷
 - Adapted for similarity search
- Hyper-parameter tunning
 - ~5,000 models trained

Dataset Statistics

Dataset	Length	Dataset Size	Training Size	
RandWalk	256			
F5	256		200k SEAsam	
F10	256	100		
Seismic	256	million series		
SALD	128		samples	
Deep1B	96			
Astro	256			

- 6. Pankaj Malhotra, et al. TimeNet: Pre-trained deep recurrent neural network for time series classification. ESANN, 2017.
- 7. Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation learning for multivariate time series. NeurIPS, 2019.
- 8. Hassan Ismail Fawaz, et al. InceptionTime: Finding AlexNet for time series classification. DMKD, 2020.

better /

SoS Preservation and SEAsam

√SoS Preservation improves tightness of approximate answers

• vs. without SoS

✓SEAsam improves tightness of approximate answers

• vs. uniformly random sampling

 \checkmark SEAnet better preserve original distances in the DEA spaces than PAA

Preserving neighborhood in DEA space

 \checkmark SEAnet well preserves the original neighbors in the embedding space

Approximate query answers' tightness

 \checkmark SEAnet provides tighter approximate answers

Conclusions

- 1. Proposed learned embeddings (DEA) as a replacement to traditional data series summarizations
- 2. Developed SEAnet to effectively learn DEA
 - designed using the novel Sum of Square (SoS) preservation regularization
- 3. Described SEAsam to efficiently train SEAnet on massive datasets
- DEA by SEAnet outperfoms PAA and other SOTA deep embeddings for data series approximate similarity search
- DEA and SEAnet lead to faster and more accurate data series processing/analytics
- several promising open research directions

Thanks!

Deep Learning Embeddings for Data Series Similarity Search

Qitong Wang and Themis Palpanas

ACM SIGKDD 2021, Singapore

