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PVLDB Artifact Availability:
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https://github.com/qtwang/iEDeaL.

LEmMMA 1. Given an i.i.d. (independent and identically distributed)
subset of negative instances Xo s from Xo, where Xo s and Xy share the
same underlying distribution P(x|y = 0,©), Lsasy, on the negative-
sampled training set {Xo s, X1} approximately shares the same con-
dition of first-order stationary points with Fg-score on the whole
training set.

Proor. Under the assumption that X s and Xj share the same
underlying distribution P(x|y = 0, ©), limits of the sample propor-
tions on {Xjp s, X1} are changed to Equation 1 with the linearity of
expectation.
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Taking Equation 1 into the limit of Fg-score [2], we can derive 15/;

for the whole dataset based on pi« s, p10,s and po1,s as the following
equation.
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Taking the gradient of the logarithm of 15,3 yields the condition at
the first-order stationary point(s) oF B /90 = 0 in Equation 2.
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where Vpios and Vpo1 s are their gradients with respect to ©.
On the other hand, using the smooth functions [1], the first order
Taylor expansion around E(*), and the linearity of expectation, we
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approximate the expectation of Lg,s,, as follows.
E(LSaSu (f(XZ ®), y))
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Examining /9@ E(Lsgs, (f(x;0),y)) = 0, we can derive its
condition at the first-order stationary point(s) in Equation 3.
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The gradient property in Equation 3 is equivalent to Equation 2.
Hence, Lemma 1 holds that Lg,s, approximately shares the same
condition of first-order stationary points with Fg-score on the
whole training set. O

Precisely, the first order Taylor expansion-based approximation
in Equation is an upper bound for E(Ls,sy,). This could be veri-
fied by examining larger order Taylor expansions [3] of E(Lsasy,)-
Intuitively, this bound is tighter when the dataset is more imbal-
anced, hence well serving real-world IED detection. We will conduct
the regret bound analysis with regard to the imbalance ratio, i.e.,
Ve > 0,P(E(|F3(0},s,) — F5(0*)] < €)) > 1 - g(& rim), in our
future studies.
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